[Quantum Data Science] Part 7. Quantum Factoring Algorithm using Schnorr’s algorithm.
Algorithm for factoring large integer.
Algorithm for factoring large integer.
Algorithm for finding optima of combinatorial problems
Algorithm for calculating financial portfolio
Quantum feature space using quantum kernel
Parameterized Quantum Circuit and their optimization method
Encoding method to embed data into quantum states
Basic Terminology used at the Quantum Theory
Comparing security of quantum and classical computer and Quantum protocol
Installing qiskit and constructing basic circuit Qiskit
Oracle, Amplitude Amplification, Grover’s and Deutsch’s Algorithm
Basic concept of the complex number and its usage in the quantum computer]
basic component of the quantum computer.
Introduction and fundamentals of Quantum computer
양자컴퓨터를 이용한 행렬 계산법
소인수 분해를 기반으로한 현세대 암호이론 기초와 양자컴퓨터의 암호이론 기초
Qiskit 설치 및 기본적인 회로작성
오라클, 확률증폭, Grover’s Algorithm과 Deutsch’s Algorithm
Quantum Phase Estimation와 Quantum State Distance Measure
복소수에 대한 기본적인 개념과 Quantum Fourier Analysis
양자 게이트와 이를 이용한 기본적인 회로들
양자 컴퓨터 인트로 및 fundamentals
Probabilistic Framework to interpret non-probabilistic Algorithms
Probabilistic Framework to interpret non-probabilistic Algorithms
Sparse Sufficient Dimension Reduction using Penalty
plans to build dimension reduction of quantum version
Sufficient Dimension Folding Theory and Techniques to reduce the dimension of tensorial data.
Generalized version of SDR and SIR
Generalized version of SDR and SIR
Non-linear Dimension Reduction - 2. Coordinate Representation and KPCA
Reproducing Kernel Hilbert Space
Contour regression and Directional Regression
Parametric, Kernel Inverse regression, Sliced Average Variance Estimator.
Introduction to SDR and SIR method
PCA의 응용 기법에 대한 설명
Kernel Trick을 활용한 High-Dimension Mapping Computing의 간소화
Bregman Divergence에 관한 설명
분할기법,계층기법,밀도기법에 대한 설명
PCA,MCA,FA에 대한 대략적인 설명
Hilbert Space
Differentiation
Integration Theory
Measure Theory
Exploring function space with Hilbert Space Framwork
Advanced concept about Matrix
Positive Lebesgue Measure
Riesz representation theorem
Absatract Integration , lebesgue integration, measure zero
Absatract Integration, sigma-algebra, simple function, measure
Continuous Function
Continuous Function
Nested Set Property,Connected Set
Boundary Point, Sequence and Completness
Set Theory, Open Set, Closed Set
Least Upper Bounds와 Cauchy Sequence, Cluster Point
Ordered Field,Number System, Real Number
계속 쓰는 시
6월에 적은 시
4월에 적은 시
3월에 적은 시
연작시
2월에 적은 시
1월에 적은 시
12월에 적은 시
11월에 적은 시
10월에 적은 시
9월에 적은 시
8월에 적은 시
7월에 적은 시
6월에 적은 시
5월에 적은 시
Quasi Newton’s Method to accelerate learning.
Solving convex problem with inequality constraints
Solving convex problem with inequality constraints
Newton Raphson Method
Gradient Descent와 Newtown’s Method의 정리
Proximal Gradient Descent and Stochastic Gradient Descent
Subgradient Method
L1 penalty에 대한 subgradient method 실습
Gradient Descent
OLS에 대한 Gradient Descent 실습
Application of Duality
meaning of convex and duality
Korea Quantum Computing
Sparse Autoencoder, Denoising AutoEncoder, Contractive Autoencoderㅇ
생성모델의 개념과 Basic Autoencoder
마크다운 매뉴얼에 대한 서술
nbconvert,rise,reveal.js에 대한 설명
예측 모델링 과정과 개선점에 대한 포스팅
기본적인 히든 마르코프 체인 구조에 대한 서술
Finite Mixture Model를 이해하고 구현해보기
VI를 통해 다중 회귀분석 적용해보기
MCMC방법인 Gibbs Sampling과 MH 기법에 대한 정리
GMM의 모수를 Gibbs Sampler와 EM Algorithm으로 추정해보기
PCA,MCA,FA에 대한 대략적인 설명
Preliminary about linear prediction
Preliminary about linear prediction
Preliminary about Vector Space, Multivariate Linear Model and Response Envelopes
Stirling’s formula about approximate behavior of permutation and various eigenvalue inequality and equality.
Preliminary of random matrix theory.
Finemapping for GWAS Variant