[Paper Review] Dimensionality Reduction as Probabilistic Inference
Probabilistic Framework to interpret non-probabilistic Algorithms
Probabilistic Framework to interpret non-probabilistic Algorithms
Probabilistic Framework to interpret non-probabilistic Algorithms
Sparse Sufficient Dimension Reduction using Penalty
plans to build dimension reduction of quantum version
Sufficient Dimension Folding Theory and Techniques to reduce the dimension of tensorial data.
Generalized version of SDR and SIR
Generalized version of SDR and SIR
Non-linear Dimension Reduction - 2. Coordinate Representation and KPCA
Reproducing Kernel Hilbert Space
Contour regression and Directional Regression
Parametric, Kernel Inverse regression, Sliced Average Variance Estimator.
Introduction to SDR and SIR method
PCA의 응용 기법에 대한 설명
Kernel Trick을 활용한 High-Dimension Mapping Computing의 간소화
Bregman Divergence에 관한 설명
분할기법,계층기법,밀도기법에 대한 설명
PCA,MCA,FA에 대한 대략적인 설명